Modeling Asymmetry and Tail Dependence among Multiple Variables by Using Partial Regular Vine

نویسندگان

  • Wei Wei
  • Junfu Yin
  • Jinyan Li
  • Longbing Cao
چکیده

Modeling high-dimensional dependence is widely studied to explore deep relations in multiple variables particularly useful for financial risk assessment. Very often, strong restrictions are applied on a dependence structure by existing high-dimensional dependence models. These restrictions disabled the detection of sophisticated structures such as asymmetry, upper and lower tail dependence between multiple variables. The paper proposes a partial regular vine copula model to relax these restrictions. The new model employs partial correlation to construct the regular vine structure, which is algebraically independent. This model is also able to capture the asymmetric characteristics among multiple variables by using two-parametric copula with flexible lower and upper tail dependence. Our method is tested on a cross-country stock market data set to analyse the asymmetry and tail dependence. The high prediction performance is examined by the Value at Risk, which is a commonly adopted evaluation measure in financial market.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preface to special issue on high-dimensional dependence and copulas

One of the biggest advances in recent years for high-dimensional copula models and applications has been the development of the vine pair-copula construction that covers continuous and discrete variables, and its extensions to include latent variables. Software has been made available in the VineCopula R package and the package that is companion to the book by Joe [6]. This special issue of the...

متن کامل

Pair-copula constructions for modeling exchange rate dependence

In order to capture the dependency among exchange rates we construct semiparametric multivariate copula models with ARMA-GARCH margins. As multivariate copula models we utilize pair-copula constructions (PCC) such as regular and canonical vines. As building blocks of the PCC’s we use bivariate t-copulas for different tail dependence between pairs of exchange rates. Alternatively we also conside...

متن کامل

Tail dependence functions and vine copulas

Tail dependence and conditional tail dependence functions describe, respectively, the tail probabilities and conditional tail probabilities of a copula at various relative scales. The properties as well as the interplay of these two functions are established based upon their homogeneous structures. The extremal dependence of a copula, as described by its extreme value copulas, is shown to be co...

متن کامل

Selecting and estimating regular vine copulae and application to financial returns

Regular vine distributions which constitute a flexible class of multivariate dependence models are discussed. Since multivariate copulae constructed through pair-copula decompositions were introduced to the statistical community, interest in these models has been growing steadily and they are finding successful applications in various fields. Research so far has however been concentrating on so...

متن کامل

Model selection for discrete regular vine copulas

Abstract Discrete vine copulas, introduced by Panagiotelis et al. (2012), provide a flexible modeling framework for high-dimensional data and have significant computational advantages over competing methods. A vine-based multivariate probability mass function is constructed from bivariate copula building blocks and univariate marginal distributions. However, even for a moderate number of variab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014